

塑料中常用透明原料的特性及注塑工艺

由于塑料具有重量轻、韧性好、成型易。成本低等优点,因此在现代工业和日用产品中,越来越多用塑料代替玻璃,特别应用于光学仪器和包装工业方面,发展尤为迅速。但是由于要求其透明性要好,耐磨件要高,抗冲击韧件要好,因此对塑料的成份,注塑整个过程的工艺,设备,模具等,都要作出大量工作,以保证这些用于代替玻璃的塑料(以下简称透明塑料),表面质量良好,从而达到使用的要求。

目前市场上一般使用的透明塑料有聚甲基丙烯酸甲酯(即俗称亚加力或有机玻璃,代号 PMMA)、聚碳酸酯(代号 PC)、聚对苯二甲酸乙二醇脂(代号 PET)、透明尼龙。AS(丙烯腈一苯 乙烯共聚物)、聚砜(代号 PSF)等, 其中我们接触得最多的是 PMMA、PC 和 PET 三种塑料,由于篇幅有限,下面就以这三种塑料为例,讨论透明塑料的特性和注塑工艺。

一、透明塑料的性能

透明塑料首先必须有高透明度, 其次要有一定的强度和耐磨性,能抗冲击,耐热性要好,耐化学性要优,吸水率要小,只有这样才能在使用中,能满足透明度的要求而长久不变,下面列出表 1, 比较一下 PMMA、PC 和 PET 的性能。

性能	密度 (g/am2)	抗拉强度 (MPa)	缺口冲击 (J/m2)	透明度 (%)	变形温度	允许含水量	收缩率	耐磨性	抗化学性
PMMA	1.18	75	1200	92	95	0.04	0.5	差	良
PC	1.20	66	1900	90	137	0.02	0.6	中	良
PET	1.37	165	1030	86	120	0.03	2	良	优

表 1: 透明塑料性能比较

- 注: (1) 因品种繁多,这只是取平均值,实际不同品种数据有异。
 - (2) PET 数据(机械方面)为经拉伸后的数据。

从表 1 数据可知 PC 是较理想的选择, 但主于其原料价贵和注塑工艺较难,所以仍以选用 PMMA 为主,(对一般要求的制品),而 RET 由于要经过拉伸才能得到好的机械性能,所以多在包装、容器中使用。

二、透明塑料注塑过程中应注意的共同问题

透明塑料由于透光率要高,必然要求塑料制品表面质量要求严格,不能有任何斑纹、气孔、泛白、雾晕、黑点、变色、光泽不佳等缺陷,因而在整个注塑过程对原料、设备、模具、甚至产品的设计,都要十分注意和提出严格甚至特殊的要求。 其次由于透明塑料多为熔点高、流动性差,因此为保证产品的表面质量,往往要在较高温度、注射压力、注射速度等工艺参数作细微调整,使注塑料时既能充满 模,又不会产生内应力而引起产品变形和开裂。

下面就其在原料准备、对设备和模具要求、注塑工艺和产品的原料处理几方面,谈谈应注意的事项。

(一)原料的准备与干燥由于在塑料中含有任何一点杂质,都可能影响产品的透明度,因此和储存、运输、加料过程中,必须注意密封,保证原料干净。特别是原料中含有水分,加热后会引起原料变质,所以一定要干燥,并在注塑时,加料必须使用干燥料斗。还要注意一点的是干燥过程中,输入的空气最好应经过滤、除湿,以便保证不会污染原料。其干燥工艺如表 2,

表 2, 透明塑料的干燥工艺:

的途教育

工艺	干燥温度(℃)	干燥时间(h)	料层厚度(mm)	备注
PMMA	70~80	2~4	30~40	采用热风循环干燥
PC	120~130	>6	<30	采用热风循环干燥
PET	140~180	3~4		采用连续干燥加料装 置为佳

(二) 机筒、螺杆及其附件的清洁

为防止原料污染和在螺杆及附件凹陷处存有旧料或杂质,特别热稳定性差的树脂存在,因此在使用前、停机后都应用螺杆清洗剂清洗干净各件,使其不得粘有杂质,当没有螺杆清洗剂时,可用 PE、PS 等 树脂清洗螺杆。当临时停机时,为防止原料在高温下 停留时间长,引起解降,应将干燥机和机筒温度降低,如 PC、PMMA 等机筒温度都要降至 160℃以下。(料斗温度对于 PC 应降至 100℃以下)

(三) 在模具设计上应注意的问题(包括产品的设计)

为了防止出现回流动不畅,或冷却不均造成塑料成型不良,产生表面缺陷和变质,一般在模具设计时, 应注意以下几点。

- a) 壁厚应尽量均匀一致, 脱模斜度要足够大;
- b) 过渡部分应逐步。圆滑过渡,防止有尖角。锐边产生,特别是 PC 产品一定不要有缺口;
- c) 浇口。流道尽可能宽大、粗短, 且应根据收缩冷凝过程设置浇口位置, 必要时 应加冷料井;
- d) 模具表面应光洁,粗糙度低(最好低于0.8);
- e)排气孔。槽必须足够,以及时排出空气和熔 体中的气 体;
- f)除 PET 外, 壁厚不要太薄,一般不得小于 1mm。
 - (四)注塑工艺方面应注意的问题(包括注塑机的要求)

为了减少内应力和表面质量缺陷,在注塑工艺方面应注意以下几方面的问题。

- a) 应选用专用螺杆、带单独温控射咀的注塑机;
- b)注射温度在塑料树脂不分解的前提下, 官用较高注射湿度;
- c)注射压力:一般较高,以克服熔料粘度大的缺陷,但压力太高会产生内应力造 成脱模因难和变形;
- d) 注射速度: 在满足充模的情况下, 一般宜低, 最好能采用慢-快-慢多级注 射;
- e)保压时间和成型周期:在满足产品充模,不产生凹陷、气泡的情况下;宜尽量短,以尽量减低熔料在机筒停留时间;
 - f) 螺杆转速和背压: 在满足塑化质量的前提下, 应尽量低, 防止产生解降的可 能;
- g)模具温度:制品的冷却好坏,对质量影响极大,所以模温一定要能精确控制其过程,有可能的话,模温官高一些好。

(五) 其他方面的问题

由于为要防上表面质量恶化,一般注塑时尽量少用脱模剂; 当用回用料时不得大于 20%。

对于除 PET 外,制品都应进行后处理, 以消除内应力,PMMA 应在 70-80T 热风循环干燥 4 小时; PC 应在清洁空气、甘油。 液体石腊等加热 110-135°C,时间按产品而定,最高需要 10 多小时。而 PET 必须 经过双向拉伸的工序,才能得到良好机械性能。

三、透明塑料的注塑成型工艺

- (一)透明塑料的工艺特性:除了以上的共同问题,透明塑料亦各有一些工艺特性,现分述如下:
- 1、PMMA 的工艺特性 PMMA 粘度大,流动性稍差,因此必须高料温、高注射压力注塑才行,其中注射温度的影响大于注射压力,但注射压力提高,有利于改善产品的收缩 率。 注射温度范围较宽,熔融温度为160℃,而分解温度达 270℃,因此料温调节范围宽,工艺性较好。故改善流动性,可从注射温度着手。 冲击性差,耐磨性不好,易划花,易脆裂,故应提高模温,改善冷凝过程,去克服这些缺陷。
 - 2、PC的工艺特性

PC 粘度大,融料温度高,流动性差, 回此必须以较高温度注塑(270-320T之间),相对来说料温调节范围较窄,工艺性不如 PMMA。注射压力对流动性影响较小,但因粘度大,仍要较大注射压力,相应为了防止内应力产生,保压时间要尽量短。 收缩率大,尺寸稳定,但产品内应力大,易开裂,所以宜用提高温度而不是压力去改善流动性,并且从提高模具温度,改善模具结构和后处理去减少开裂的可能。当注射速度低时,浇口处易生波纹等缺陷,放射咀温度要单独控制,模具温度要高,流道、浇口阻力要小。

3、PET 的工艺特性

PET 成型温度高,且料温调节范围窄(260-300℃),但熔化后,流动性好,故工艺性差,且往往在射咀中要加防延流装置。 机械强度及性能注射后不高,必须通过拉伸工序和改性才能改善性能。 模具温度准确控制,是防止翘曲。变形的重要因素,因此建议采用热流道模具。模具温度高,否则会引起表面光泽差和脱模困难。

四、透明塑料件的缺陷和解决办法

由于篇幅关系,这里只讨论影响产品透明度的缺陷,其他缺陷请参考产品说明书或其他资料•。其缺陷大概有以下几项:

- (一)银纹:由充模和冷凝过程中,内应力各向异性影响,垂直方向产生的应力,使树脂发生流动上取向,而和非流动取向产生折光率不同而生闪光丝纹,当其扩展后,可能使产品出现裂纹。除了在注塑工艺和模具上注意外(见表 4,最好产品作退火处理。如 PC 料可加热到 160℃以上保持 3-5分钟,再自然冷却即可。
- (二)气泡:主于树脂内的水气和其他气体排不出去,(在模具冷凝过程中)或因充模不足,冷凝表面又过快冷凝而形成"真空泡"。其克服方法见表 4。
- (三)表面光泽差:主于模具粗糙度大,另一方面冷凝过早,使树脂不能复印模具表面的状态,所有这些都使其表面产生微小凹凸不平,而使产品失去光泽。其克服方法见表 4。
- (四)震纹:是指从直浇口为中心形成的密集波纹,其原因因熔体粘度过大,前端料已在型腔冷凝,后来料又冲破此冷凝面,而使表面出现震纹。其克服方法见表 4。
- (五)泛白、雾晕:主要由于在空气中灰尘落入原料之中或原料含水量太大而引起的。其克服方法见表 4。
- (六)白烟、黑点:主要由于塑料在机筒内,因局部过热而使机筒树脂产生分解或变质而形成的。其克服方法见表 4。

克服方法\缺陷	银纹	气泡	表面光泽差	震纹	泛白、雾晕	白烟、黑点
树脂原料有杂质 或污染	清除杂质、污 染				清除杂质、污 染	清除杂质、污染
树脂原料干燥	干燥要充分	干燥要充分			干燥要充分	
融料温度	降低、控制精 确	保证塑化再降 低	增加	增加,特别射嘴	降低、控制精确	尽量降低料温
注射压力	增加	增加	增加	增加	增加	调整合适、不变质
注射速度		增加	增加	增加		
注射时间		增加		增加		
保证压力						
生产周期					减少	减少料在机筒内 停留时间
背压压力	调整合适				增加	

心凯遙教育

螺杆转速	减少					
浇注系统	合理(尺寸及 布局)	壁厚部分加浇	设置布局合 理	合理(尺 寸及布 局)		合理,尽量短粗
模具温度		调整适当,略 增	增加	增加	增加	
冷却时间		增加	增加			
模具排气	排气孔够位 置对	排气孔够位置 对		加冷料井 改善		排气孔够位置对
射嘴、流道、浇口	不能堵塞	料流畅、不塞	料流畅、不塞	料流畅、 不塞		
注射量		增加	78 - 00	191		

Trong all High 32 days