塑胶产品结构设计常识

1. 胶厚(胶位):塑胶产品的胶厚(整体外壳)通常在 0.80-3.00 左右,太厚容易缩水和产生汽泡,太薄难走满胶,大型的产品胶厚取厚一点,

小的产品取薄一点,一般产品取 1.0-2.0 为多。而且胶位要尽可能的均匀,在不得已的情况下,局部地方可适当的厚一点或薄一点,

但需渐变不可突变,要以不缩水和能走满胶为原则,一般塑料胶厚小于 0.3 时就很难走胶,但软胶类和橡胶在 0.2-0.3 的胶厚时也能走满胶。

2. 加强筋(骨位): 塑胶产品大部分都有加强筋, 因加强筋在不增加产品整体胶厚的情况下可以大大增加其整体强度, 对大型和受力的产品

尤其有用,同时还能防止产品变形。加强筋的厚度通常取整体胶厚的 0.5-0.7 倍,如大于 0.7 倍则容易缩水。加强筋的高度较大时则要做 0.5-15 的斜度(因其出模阻力大),高度较矮时可不做斜度。

3. 脱模斜度: 塑料产品都要做脱模斜度,但高度较浅的(如一块平板)和有特殊要求的除外(但当侧壁较大而又没出模斜度时需做行位)。

出模斜度通常为 1-5 度,常取 2 度左右,具体要根据产品大小、高度、形状而定,以能顺利 脱模和不影响使用功能为原则。产品的前模斜度通常

要比后模的斜度大 0.5 度为宜,以便产品开模事时能留在后模。通常枕位、插穿、碰穿等地方均需做斜度,其上下断差(即大端尺寸与小端尺寸之差)单边要大于 0.1 以上。

4. 圆角(R角): 塑胶产品除特殊要求指定要锐边的地方外,在棱边处通常都要做圆角,以便减小应力集中、利于塑胶的流动和容易脱模。

最小 R 通常大于 0.3, 因太小的 R 模具上很难做到。

5. 孔:从利于模具加工方面的角度考虑,孔最好做成形状规则简单的圆孔,尽可能不要做成复杂的异型孔,孔径不宜太小,孔深与孔径比不宜太大,因细而长的模具型心容易断、变形。孔与产品外边缘的距离最好要大于 1.5 倍孔径,孔与孔之间的距离最好要大于 2 倍的孔径,

以便产品有必要的强度。与模具开模方向平行的孔在模具上通常上是用型心 (可镶、可延伸

留) 或碰穿、插穿成型,与模具开模方向不平行的孔通常要做行位或斜顶,在不影响产品使

用和装配的前提下,产品侧壁的孔在可能的情况下也应尽量做成能用碰穿、插穿成型的孔。

6. 凸台(BOSS): 凸台通常用于两个塑胶产品的轴一孔形式的配合,或自攻螺丝的装配。当 BOSS 不是很高而在模具上又是用司筒顶出时,其可不用做斜度。当 BOSS 很高时,通常在其外侧加做十字肋(筋),该十字肋通常要做 1-2 度的斜度,BOSS 看情况也要做斜度。当 BOSS 和柱子(或另一 BOSS)配合时,其配合间隙通常取单边 0.05-0.10 的装配间隙,以便适合各 BOSS 加工时产生的位置误差。当 BOSS 用于自攻螺丝的装配时,其内孔要比自攻螺丝的螺径单边小 0.1-0.2,以便螺钉能锁紧。如用 M3.0 的自攻螺丝装配时,BOSS 的内孔

通常做Φ2.60-2.80。

7. 嵌件:把已经存在的金属件或塑胶件放在模具内再次成型时,该已经存在的部件叫嵌件。 当塑胶产品设计有嵌件时,要考虑嵌件在模具内

必须能完全、准确、可靠的定位, 还要考虑嵌件必须与成型部分连接牢固, 当包胶太薄时则

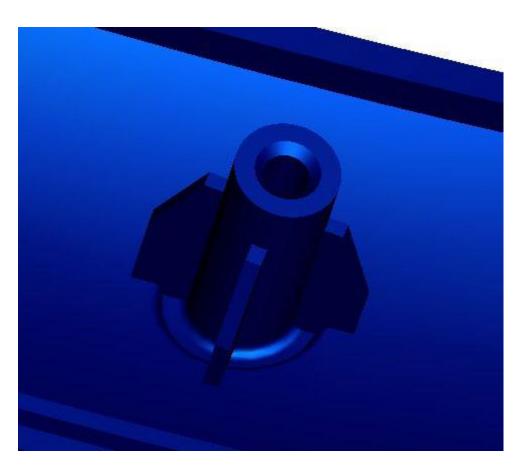
不容易牢固。还要考虑不能漏胶。

- 8. 产品表面纹面:塑料产品的表面可以是光滑面(模具表面省光)、火花纹(模具型腔用铜工放电加工形成)、各种图案的蚀纹面(晒纹面)和雕刻面。当纹面的深度深、数量多时,其出模阻力大,要相应的加大脱模斜度。
- 9. 文字: 塑料产品表面的文字可以是凸字也可以是凹字, 凸字在模具上做相应的凹腔容易做到, 凹字在模具上要做凸型心较困难。
- **10**. 螺纹:塑胶件上的螺纹通常精度都不很高,还需做专门的脱螺纹机构,对于精度要求不高的可把其结构简化成可强行脱模的结构。
- **11**. 支撑面:塑胶产品通常不用整个面做支撑面,而是单独做凸台、凸点、筋做支撑。因塑胶产品很难做到整个较大的绝对平面 ,**其容易变形翘曲。**
- 12. 塑胶产品的装配形式:
- 1.超声线接合装配法,其特点是模具上容易做到,但装配工序中需专门的超声机器,成本增大,且不能拆卸。超声线的横截面通常做成 0.30 宽 0.3 高的三角形,在长度方向以 5-10MM 的长度间断 2MM;
- 2.自攻螺丝装配法,其特点是模具上容易做到,但增加装配工序,成本增大,拆卸麻烦;
- 3.卡钩一扣位装配法, 其特点是模具加工较复杂, 但装配方便, 且可反复拆卸, 多次使用。

卡钩的形式有多种,要避免卡钩处局部胶位太厚,还要考虑卡钩处模具做模方便。卡钩要做

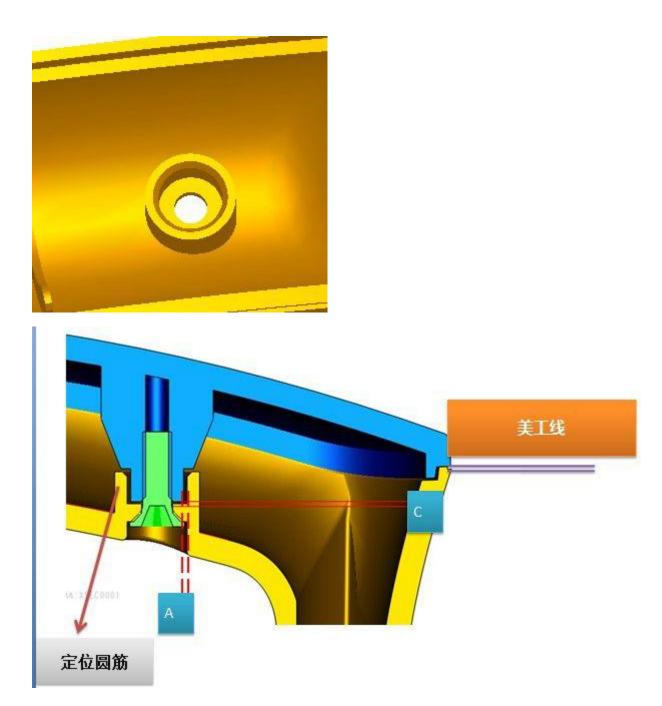
到配合松紧合适,装拆方便,其配合面为贴合,其他面适当留间隙。

- 4.BOSS 轴一孔形式的装配法,其特点是模具加工方便,装配容易,拆卸方便,但其缺点是装配不是很牢固。
- 13. 齿口:两个塑胶产品的配合接触面处通常做齿口,齿口的深度通常在 0.8-2.5 左右,其侧面留 0.1 左右的间隙,深度深时做斜度 1-5 度,**常取** 2 度,深度浅时可不作斜度。齿口的上下配合面通常为贴合(即 0 间隙)。
- **14**. 美观线:两个塑胶产品的配合面处通常做美观线,美观线的宽度常取 0.2-1.0,视产品的整体大小而定。
- **15**. 塑胶产品的表面处理方法:常用的有喷油、丝印、烫金、印刷、电镀、雕刻、蚀纹、抛光、加颜色等。
- **16.** 常用到的金属材料有:不锈钢、铜合金(黄铜、青铜、磷铜、红铜)、弹簧钢、弹簧、铝合金、锌合金。
- 17. 金属材料常用的防锈方法: 电镀、涂防锈油、喷防锈漆。


产品结构(3)-塑胶螺丝柱的配合

螺丝柱的设计说小不小,说大不大。涉及到注塑工艺上面经常会碰见螺丝柱缩水,设计到组装工艺上还有螺丝柱打裂或者螺丝柱滑丝,还有难安装的问题。

1.螺丝柱的设计要明确产品的大小和结构的特点。比如大的产品可以用回到 4.2 或者 5.0 的自攻螺丝,小的可以用到 1.8 的。还有产品的材料特性,PC 材料的螺丝内经要设计的稍微大一些。


2.螺丝柱设计。

螺丝柱还是要设计下火山口,有总比没有好,万一不行还可以加胶,如果后期发现缩水,再来加火山口烧焊就麻烦了。螺丝柱最好设计标准化些,便于购买司筒针和司筒。但是如果是量很大的画,可以加上倒角,便于安装。如下图。

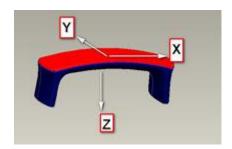
螺丝柱设计

3.螺丝过孔的设计。螺丝过孔要比螺丝大,这个大家都知道,但是有很多人设计螺丝配合的时候,不设计定位的,螺丝柱也没有倒角,生产线打螺丝打偏或者不容易定位。建议设计一个圆形的定位筋。

如上图, C的间隙要稍微留大一些, 0.2~0.3mm。避免美工缝隙增大。螺钉过孔最好做一个倒角, 便于安装导入。C角的作用一般可以在安装过程中起到倒入的作用。

4.螺丝柱内外径的设计,网上有很多要求,我觉得这个数据可以参考,尊重一个原则,便于加胶就行,减胶是太麻烦了,不确定的最好一个改模空间。

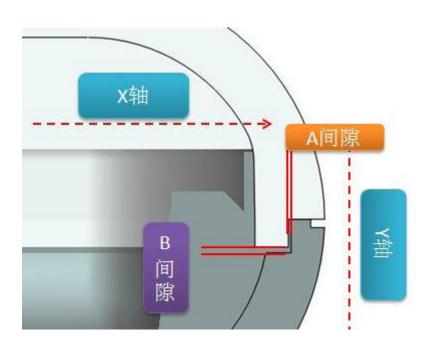
材料	螺丝孔直径(D1)系数	螺丝柱外径(D2)系数
ABS	0.80	2.00
ASA	0.78	2.00
PA46	0.73	1.85
PA46 GF30	0.78	1.85
PA6	0.75	1.85
PA6GF30	0.80	2.00
PA66	0.75	1.85
PA66 GF30	0.82	2.00
PBT	0.75	1.85
PBT GF30	0.80	1.80
PC	0.85	2.50
PC GF30	0.85	2.20
PE-HD	0.75	1.80
PE-LD	0.75	1.80
PET	0.75	1.85
PET GF30	0.80	1.80
PMMA	0.85	2.00
POM	0.75	1.95
PP	0.70	2.00
PP TF20	0.72	2.00
PPO	0.85	2.50
PS	0.80	2.00
PVCU	0.80	2.00
SAN	0.77	2.00


注: 螺丝孔公称直径×系数

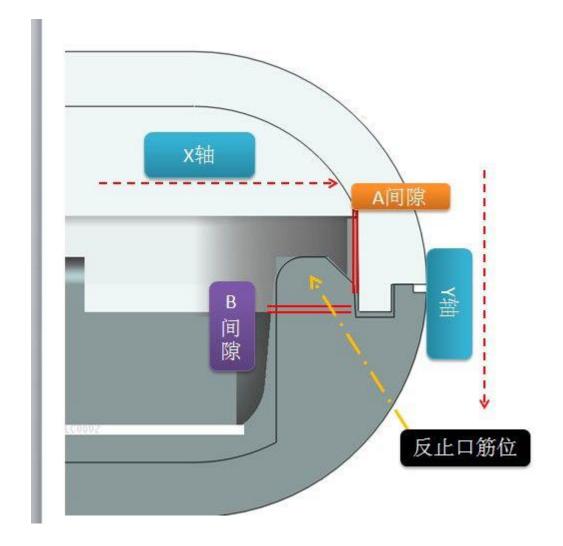
比如 ABS 要设计一个 ST3.0*8 的螺钉,螺丝孔内径可以设计成 3.0×0.8=2.4mm。螺丝柱外径可以设计成: 2.0×3.0=6mm。这个只能作为参考,其实内径的可以作为参考,外径的就考虑螺丝柱的壁厚就行。我们一般 3.0 自攻螺丝柱外径只需要 5.0~5.3mm 即可,太大就容易缩水了。这样我们可以总结下就是 5.2 减去 2.4 再除以 2 就是螺丝柱的壁厚是1.4.壁厚太厚容易缩水,跟加强筋的设计有异曲同工之妙,不过螺丝柱要考虑强度,怕打裂。

5.螺丝柱的安规要求。

产品结构(2)-止口怎么设计(1)

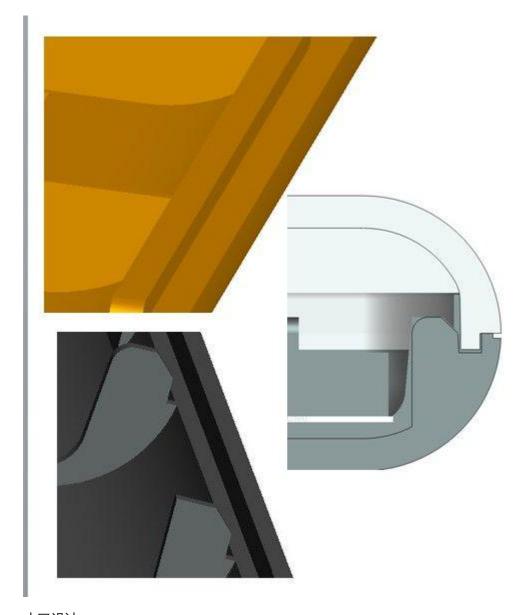

止口还有反止口,止顾名思义就是限制的意思。在产品结构设计中,表现就是限位的作用。 我的理解就是限制产品移动,就是是 X 轴和 Y 轴的限位,空间上的 Z 轴已经被螺丝卡扣之 类的联接结构限位住了。所以我们要设计止口都凹凸结构,有的会加一些反止口,就是防止 变形用的,根据产品特点来设计。

止口设计

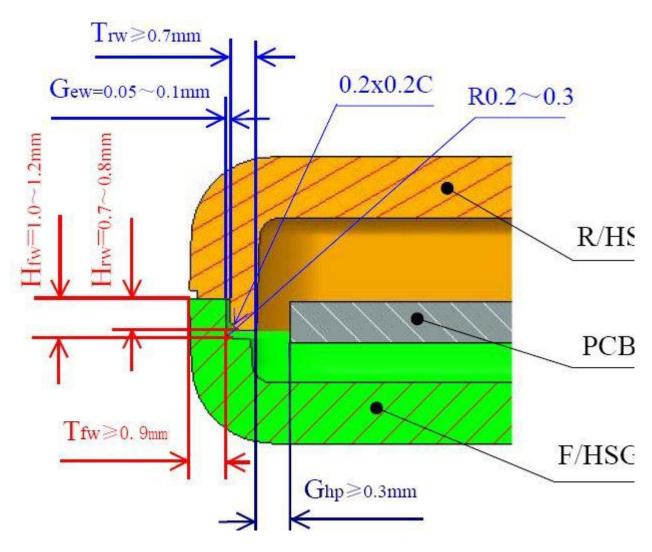

下面介绍一种常用的止口设计,当然还有不同的表现形式。这是第一种表现形式,后续介绍不同造型的止口表现形式。希望对大家特别是初入结构的同行有帮助吧。

一、下图是止口的设计:

止口

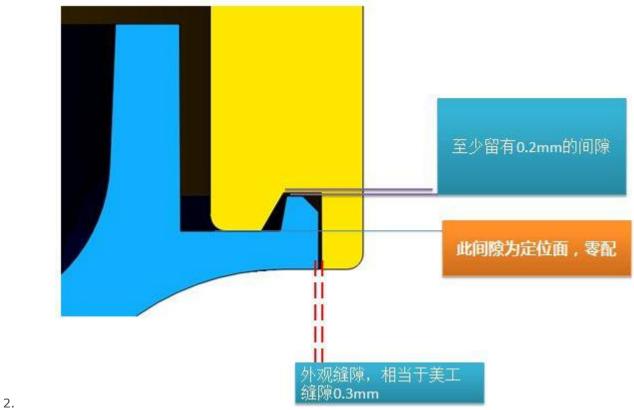

- 1.理论上 B 间隙应该比 A 间隙大。因为 B 间隙过小会导致两者外观美工缝隙过大。
- 2.一般情况下,产品中小型的件都可以参考 A: 0.1mm; B: 0.2 mm。大件可以适当增
- 大,后期可以电火花处理。
- 二、反止口设计

反止口反插骨

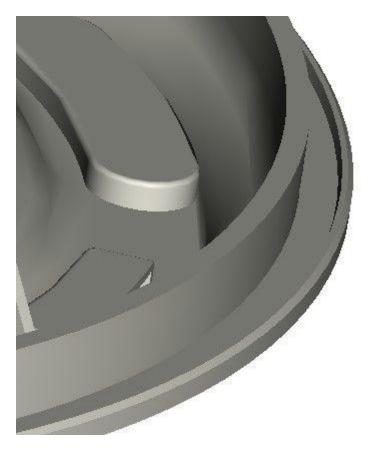

- 1.反止口又称反插骨,就是防止变形而保证两者之间间隙的一种设计方法。
- 2.理解起来很简单,就是防止上面件往里面移动,也就是我们所说的限位。
- 3.反止口最好有一定的斜度和 C 角, 方便装配和模具成型。

三、整体效果:

止口设计


4.止口设计在结构设计中是比较入门的结构,但是也有很多讲究。不同产品不同设计。

参考止口设计


止口除了止口设计(1)的表现形式外,还有其他的表现形式,下面一种就是我们会遇到的的。

1. 止口设计(2)表现为:包裹式的止口设计指蓝色件被黄色件的止口设计。

止口设计 2

- 3. 产品与止口设计一样,里面蓝色的设计需要考虑设计 C 角或者圆角设计或者斜度设计方面模具制造和方便装配。
- 4. 产品的实物图:

止口设计 2

